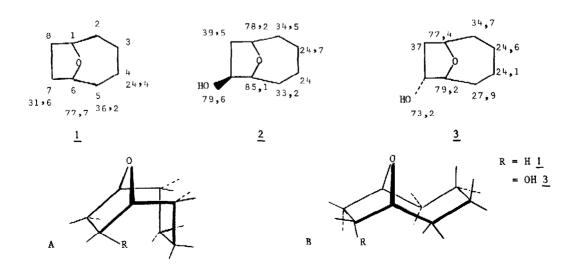
ETUDE CONFORMATIONNELLE DE DERIVES OXA-9 BICYCLO [4.2.1.] NONANIQUES

PAR R.M.N. DU 13C.


M. BARRELLE, M. APPARU et C. GEY

Laboratoire de Chimie Organique, Université Scientifique et Médicale de Grenoble, B.P. 53 - 38041 GRENOBLE-CEDEX - FRANCE.

(Received in France 11 October 1976; received in UK for publication 25 October 1976)

L'étude des conformations de dérivés bicyclo [3.3.1.] nonaniques a été l'objet de nombreux travaux (1). En R.M.N. du ¹³C les structures bicyclo— et hétéro bicyclo [3.3.1.] nonaniques ont été soumises récemment à de nombreuses investigations (2). En série bicyclo [4.2.1.] nonaniques la présence d'un cycle à 7 chaînons augmente les possibilités de conformations et ces systèmes n'ont pas retenu beaucoup d'attention. Les effets sur les déplacements chimiques dus aux interactions stériques et électroniques que la R.M.N. du ¹³C permet d'observer contribuent grandement à l'étude stéréochimique. Nous avons entrepris l'étude en R.M.N. du ¹³C de la stéréochimie de divers systèmes hétérobicyclo [4.2.1.] nonaniques. Nous rapportons ici les résultats relatifs à la conformation des molécules 1, 2, 3 ci-après.

Les déplacements chimiques mesurés par rapport au TMS dans CDC1₃ sont inscrits sur les figures. Ils ont été établis par comparaison avec d'autres systèmes bicycliques comprenant un cycle à 5 chaînons. D'autre part, la comparaison de <u>1</u>, <u>2</u> et <u>3</u> les détermine sans ambiguité.

Le fait de trouver pour $\underline{1}$ quatre couples de valeurs pour les déplacements chimiques impose pour ce produit une conformation de type A ou B dans lesquelles le cycle à 7 chaînons est de forme chaise ou bateau. Les conformations gauches sont ainsi exclues. Le choix de A ou B est fonction des résultats obtenus pour $\underline{2}$ et $\underline{3}$. En effet, on constate que les couples C_3 - C_4 ont les mêmes déplacements chimiques dans les trois molécules à quelques dixièmes de ppm près. Ceci implique l'existence des mêmes interactions vis à vis de C_3 - C_4 , ou leur absence dans chacune des molécules $\underline{1}$, $\underline{2}$ et $\underline{3}$.

Dans le composé $\underline{2}$, le substituant OH exo ne peut pas avoir d'interactions stériques influant sur les déplacements chimiques, quelle que soit la conformation A ou B envisagée. Seul C_5 est affecté par un effet anti- γ de 3 ppm de nature non stérique (3).

En ce qui concerne $\underline{3}$, s'il est dans la conformation B, le groupe OH endo aura une interaction de type γ -stérique avec C_5 . Par contre, si $\underline{3}$ possède la conformation A, le groupe OH endo ne doit pas avoir d'interaction stérique forte avec C_5 mais avec C_4 (interaction de type δ déblindante) et dans ce cas le carbone C_4 doit résonner à une valeur plus grande que 24,1 ppm. Or on constate que C_5 est blindé de 8,3 ppm, ce qui est significatif d'un effet γ -gauche entre OH et C_5 . Ces résultats excluent une conformation de type A pour $\underline{1}$ et la symétrie des valeurs de déplacements chimiques obtenue pour ce composé imposent la conformation B. Pour $\underline{2}$ et $\underline{3}$ les résultats permettent d'exclure aussi la conformation A, les petites variations de δ pour C_2 , C_3 , C_4 sont peut-être significatives de légères distorsions de la conformation B que nous attribuons à ces produits (4).

- REFERENCES et NOTES -

- (1) H. CALDARARU et M. MORARU, J. amer. chem. Soc., 96, 149 (1974) et références citées.
- (2) a) A. HEUMANN et H. KOLSHORN, Tetrahedron, 31, 1571 (1975).
 - b) J.R. WISEMAN et H.O. KRABBENHOFT, J. org. Chem., 40, 3222 (1975).
 - c) J.R. WISEMAN et H.O. KRABBENHOFT, J. org. Chem., 41, 589 (1976).
 - d) J.R. WISEMAN, H.O. KRABBENHOFT et B.R. ANDERSON, J. org. Chem., 41, 1518 (1976).
 - e) J.A. VINCENT, P. SCHIPPER, A. DE GROOT et H.M. BUCK, Tetrahedron Letters, 24, 1989 (1975).
 - f) H.J. SCHNEIDER, M. LONSDORFER et E.F. WEINGAND, Org. Mag. Res., 8, 363 (1976).
- (3) E.L. ELIEL et coll., J. amer. chem. Soc., 97, 322 (1975).
- (4) 1 est synthétisé selon : F.G. BORDWELL et M.L. DOUGLAS, J. amer. chem. Soc., 88, 993 (1966),
 - 2 et 3 selon M. BARRELLE et M. APPARU, Bull. Soc. Chim., 2016 (1972).
 - Spectres 13 C réalisés sur appareil BRUKER 15,08 MHz.